If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45-10t-5t^2=0
a = -5; b = -10; c = +45;
Δ = b2-4ac
Δ = -102-4·(-5)·45
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{10}}{2*-5}=\frac{10-10\sqrt{10}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{10}}{2*-5}=\frac{10+10\sqrt{10}}{-10} $
| -8n-4=-8+9n | | -2x^2-13x-50=3x | | 5h−3h=6 | | +3/7(m-9)=3+6m | | 8x+71=90 | | 0=-16t^2+88t+12 | | 18.6=-4.1s+92.4 | | -0.32v+0.18v=0.125v-1.95 | | 26=h | | 93=w+1 | | 98=83d+15 | | 44=44p | | 55=-8g+95 | | 3200=2000+200x | | 4v^2+6v+1=0 | | x=1.5(x-10) | | s+9/s=-10 | | 4/3+1/2=1/x | | 4x^2+5x=240 | | |x+3|=-4 | | p+25/7=6 | | 38=p/6+31 | | 4x^2+5x-240=0 | | √x+3=-4 | | 61=1/2(10x+1-5x-1) | | 3y^2-7y+1=0 | | 2b−4=20 | | 6x^2=1719 | | 4x-5=7x-32 | | 18=2+2g | | 6x+18=-12+4x | | 4(x+9)=-6x-34 |